Portfolio

Upcoming Event

BME GUEST SEMINAR
"The 'Art' of Computational Modeling in Knee Biomechanics"
Ahmet Erdemir, PhD, Cleveland Clinic
Jason Halloran, PhD, Cleveland State University
Carl Imhauser, PhD, Hospital for Special Surgery
Peter Laz, PhD, University of Denver
Kevin Shelburne, PhD, University of Denver
Wednesday, December 13, 2017 

 

 

Client: Jason Halloran Ph.D. and Jack Andrish M.D. / Cleveland Clinic

Services Provided: Experiment Design / Robotic Knee Joint Testing / Data Analysis

Patellofemoral complications, including femoral trochlear dysplasia, are the single largest reason for knee related clinical visits. Trochlear dysplasia is a morphological abnormality that can lead to patellar instability and dislocation. Trochlear osteotomy, literally raising the anterior surface of the lateral condyle, is considered a viable intervention procedure for symptomatic knees. Development of a pre-surgical planning tool able to address this issue, as well as many others, will lead to fewer complications and improved patient satisfaction. Such a framework requires predictive capabilities found through systematic validation and correlation with clinical outcomes. Towards the goal of development and validation of such a platform, the objective of this study was to compare specimen-specific explicit finite element (FE) predicted contact mechanics with experimental results before and after trochlear osteotomy. Novelty is included as previous patellofemoral studies, experimental or computational, have not quantified the effects surgical intervention on resulting contact mechanics. An explicit framework was chosen to evaluate robustness and potential computational efficiency.