Portfolio

Upcoming Event

Johnson & Johnson Mechanical Testing and Analysis Summit 
Robb Colbrunn, Ph.D., Guest Speaker
Director of BioRobotics and Mechanical Testing Core
Medical Device Solutions (MDS) Cleveland Clinic
Adjunct Assistant Professor, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University
September 18-20, 2018
Syracuse, IN

BME GUEST SPEAKER SEMINAR
"Back to Metabolism Basics:Transport and Bioenergetics in Tumors and Brain Endothelial Cells"
Lester R. Drewes, Ph.D.
Professor of 
Biochemistry & Molecular Biology
Director, Graduate Programs, MSD
Department of Biomedical Sciences
University of Minnesota Medical School Duluth
Hosted by Chaitali Ghosh, PhD.
September 28, 2018



 

Client: Jason Halloran Ph.D. and Jack Andrish M.D. / Cleveland Clinic

Services Provided: Experiment Design / Robotic Knee Joint Testing / Data Analysis

Patellofemoral complications, including femoral trochlear dysplasia, are the single largest reason for knee related clinical visits. Trochlear dysplasia is a morphological abnormality that can lead to patellar instability and dislocation. Trochlear osteotomy, literally raising the anterior surface of the lateral condyle, is considered a viable intervention procedure for symptomatic knees. Development of a pre-surgical planning tool able to address this issue, as well as many others, will lead to fewer complications and improved patient satisfaction. Such a framework requires predictive capabilities found through systematic validation and correlation with clinical outcomes. Towards the goal of development and validation of such a platform, the objective of this study was to compare specimen-specific explicit finite element (FE) predicted contact mechanics with experimental results before and after trochlear osteotomy. Novelty is included as previous patellofemoral studies, experimental or computational, have not quantified the effects surgical intervention on resulting contact mechanics. An explicit framework was chosen to evaluate robustness and potential computational efficiency.